
5. Nitsche, J., Uber LTnstLtigkeiten in den Ableitungen von Losungen quasilinear- 
er hyperbolischer Differential - gleichungsysteme. J. Rational Mech. and Ana- 
lysis, Vol.2, Nr.2. 1953. 

6. Rubina, L. I., The propagation of weak discontinuities in the systems of equa-- 
tions of magnetogasdynamics. PMM Vol. 33, Ng5, 1969. 

7. Kamke, E., Bemerkungen zur Theorie der partiellen differentialgleichenden 

erster Ordnung.Math, Z., 1943, Bd.49, NDP. s.256 - 284. 
8. Wood, R, W., Physical Optics. 3rd ed. N.Y. Macmillan, 1934. 

Translated by L.K. 

UDC 532.5 

ON CERTAIN CLASSES OF QUAWSTATIONARY FLOWS 

OF A PERFECT INCOMPRESSIBLE FLUID 

PMM Vol. 36, w3, 1972, pp.444-449 
N. N. GORBANEV 

(Tomsk) 

(Received July 5, 1971) 

We consider a nonstationary flow with stationary streamlines (i. e. a quasi-stat- 
ionary flow) of a perfect incompressible fluid in a conservative external force 
field. 

A specific property is obtained for the field of velocity directions of an irrot- 

ational quasi-stationary flow, a relationship determined between the moduli of 
the velocities of the quasi-stationary and the stationary flow with the same stre- 

amlines, and a possibility of existence of rotational and irrotational quasi-stat- 
ionary flows with common streamlines is studied. 

In [l - 31 the necessary conditions are obtained for the field of unit vectors 
in order that it may serve as a field of velocity directions of stationary flow of 

an incompressible fluid. An analogous problem for a quasi-stationary flow is 
solved in [4] only for the case when the field of velocity directions is rectilinear. 

1, Let us denote the unit velocity direction vector by e and the streamline curva- 
ture vector by k. The field of vectors I = k - e div e is called the field of adjoint 

vectors of the field of e. A vector field is called holonomic [5], if there exists a family 
of surfaces orthogonal to the field. The quantity H = div e is the mean curvature of 

the field of e [6]. A field of mean zero curvature is called the minimal field [l]. 
We shall now find the necessary and sufficient geometrical conditions for the field of 

unit vectors c in order that it may serve as a field of velocity directions of an irrotat - 
ional quasi-stationary flow. 

Theorem 1. The field of unit vectors e may serve as a field of velocity directions 
of an irrotational quasi-stationary flow if and only if 

1) the field of e is holonomic (em rot e = (‘); 
‘2) the field of its adjoint vectors is potential (,rot 1 = 0). 
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Fields of unit vectors satisfying these conditions exist and can be determined to with- 
in two functions of two arguments. If the field of directions is specified, then the velo- 
city modulus of an irrotational quasi-stationary flow is determined to within one funct- 
ion of a single argument. 

The conditions (1) and (2) turn out to be the characteristic properties of the fields of 
velocity directions of an irrotational stationary flow. Since specifying the field of vel- 

ocity directions is equivalent to specifying a congruence of the streamlines, the follow- 
ing theorem is valid. 

Theorem 2. A congruence of the lines can serve as a congruence of the stream- 

lines of an irrotational quasi-stationary flow of a perfect incompressible fluid if and only 
if it can be a congruence of the streamlines of an irrotational stationary flow. 

Note. The following relation exists between the velocity moduli of the irrotational 

quasi-stationary and the irrotational stationary flow with common streamlines: if W is 
the velocity modulus of the irrotational stationary flow, then $ (t) w7 where IJ (t) is 

an arbitrary function of time only, is the velocity modulus of the irrotational quasi-sta- 
tionary flow with the same streamlines. Conversely, the modulus ‘CT of velocity of the 
irrotational quasi-stationary flow can always be represented in the form V = $* (t) v, 
where $* (t) is a certain function of time. 

let us investigate the possibility of existence of both,an irrotational and a rotational 

quasi-stationary flow with common streamlines. 
Theorem 3. The field of unit vectors e of an irrotational quasi-stationary flow 

can serve as a field of velocity directions of a rotational quasi-stationary flow if and only 
if the following conditions hold in addition to the conditions (l)and(d) of Theorem 1: 

3) the field of the curvature vectors k is holonomic, i.e. k. rot k = 0; 
4) e-grad H = Hz. 
The results of [l] imply that the field of velocity directions of the irrotational and 

rotational stationary flows with common streamlines is minimal (H = 0). In this case 
I = k and the conditions (3) and (4) are satisfied. It follows that both the irrotational 
and rotational quasi-stationary flows with common streamlines exist. 

Jet us denote the velocity moduli of the quasi-stationary and the.stationary flow by 
V* and W*, respectively, and by l and Wfor the particular case of an irrotational 
quasi-stationary and an irrotational stationary flows. We shall now consider the relation 

between the moduli of the irrotational and rotational quasi-stationary and stationary 
flows with common streamlines. 

Theorem 4. If the field of velocity directions of an irrotational quasi-stationary 
flow is minimal, the sum of the modulus Vof this flow and the modulus w*of the statio- 

nary flow with the same streamlines is equal to the modulus V*of velocity of the quasi- 
stationary flow with the same streamlines, i. e. we have the relation 

1/* == I/ + w* 

Taking into account the Note in Theorem 2, we can write this relation in the form 

v* -~ I& (t)W + fi ‘* remembering that if W*is the velocity modulus of a rotational ) 
stationary flow, then c’* is a velocity modulus of a rotational flow. On the other hand, 

if W*denotes the velocity modulus of an irrotational stationary flow, then T/* is also 
a velocity modulus of an irrotational quasi-stationary fIow with the same streamlines. 
Since for a given minimal field of velocity directizm of an irrotational stationary flow 
w* is determined to within one function of a single argument [1], then 
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TI* = ql (t) w + w* is determined to within two functions of a single argument. 
The boundary conditions for a quasi-stationary flow can be specified in accordance 

with the relation connecting the quasi-stationary and the stationary flow, and the boun- 

dary conditions for a stationary motion. 

2. The above results have been obtained by applying the methods of the Cartan cal- 
culus of exterior forms to the problem of compatibility of the systems of differential 

equations of hydrodynamics. 
Let a non-rectilinear field of unit vectors e be specified in a three-dimeWona1 region 

of the Euclidean space, this is equivalent to specifying a congruence of lines. The case 
of a rectilinear field was dealt with in [4] and is therefore omitted. Let us assign to each 

point of definition of the given field a Frenet n -hedron for a vector line of this field, 

passing through this point. Let es = e, es, e, be unit vectors of the tangent, the prin- 
cipal normal and the binormal to the line, respectively, and M be the radius vector of 
the point. The differential of the basis vectors ei and the differential of the radius 
vector &f can be expanded at every point over the basis at this point to yield so-called 

derivative formulas n] 

dM = oiei, dei = oiiej (i* i = 1.2,3) (2.1) 

The matrix’11 oii (1 is skew symmetric, i.e. o i3 = -0 ‘i. Therefore only three of 
the forms o i’, namely o s2, o s1 and 61 r2 are distinct. Since the region is three-dimen- 

sional, the forms a~‘, 61 2 and o 3 are linearly independent and can be used to express 
all the remaining forms 

3 0 3a = a,or + a202 + o&l , w3l = b,ol + &II2 (2.2) 

aI2 = clol + c202 -t c3w3 

Here b, = 0 since e2 is directed along the principal normal to the line. The system 
(2.1) is completely integrable, then the following structural equations hold: 

Do’ = [ Cl,k$] , DWji = [ :I$%),~] (i, j, In = 1, 2, 3) (2.1-i) 

where Do i is the external differential and [w ‘0 ‘j] is the external product [7]. 
Let V = lie, denote the velocity of flow of a perfect incompressible fluid. Then 

the system of equations of hydrodynamics can be written in the total differentials as 
follows: dV = VI01 + v,wa - vz&Os + V& 

dv = U3v202 + (v,’ - HV2) o3 + ‘Ft dl (2.4) 

The first equation is the continuity equation and the second is the Euler equation in 
which cp denotes the acceleration potential. Since 

rot V = (V, - a,V) e, - Tile, + V (a, - b2) e3, 

we have for the irrotational flow 
v, = 0, va = a3v, a, - b, = 0 @.r,) 

The third condition means that the field of velocity directions of the irrotational quasi- 
stationary flow is a holonomic field [S]. As we consider here only the flows which have 

streamlines common with the irrotational quasi-stationary flow, we shall limit our con- 
siderations to the holonomic unit vector fields. 

A system defining an irrotational flow has the form 
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dV = asVo2 - HV& + Vtdt, dq = aaVzo2 + (Vt - HV‘J) ~8 + cptdt (2.6) 

We shall clarify now whichunit vector fields may serve as the fields of velocity direct- 
ions for an inotational quasi-stationary flow, i. e. what conditions must be imposed on 
the coefficients ai, bi and ci (except al - bz = 0) of (2.2). for the system (2.6) to be 
in involution flJ. Performing the external differentiation on (2.6), we obtain the follo- 

wing System of external bilinear differential eauations: 

[dvtdtl = [dOal (HI + au) V + [020s] (Hz + as - haa) V + [ozdt] asVt - [o*dt] H V, 

[dvt~l + [@&I = [@‘ma1 (HI + ~SY) V2 + [o~o*] {(Ha + a22 - bias) P + ayvt) + 
+ [o2dt] 2a.JVt + [oadt] (- 2HVVt) (2.7) 

where Y = a, - cs,and Hi, HZ and ax3 are given by 

dE1 = H,o’ + HNP + H3u3, da, = aSlml + a8202 + a3.@ 

In order that the field of unit vectors may serve as a field of velocity directions of irro- 
tational quasi-stationary flow, it is necessary and sufficient to satisfy the following con- 
ditions: al - bz = 0, HI + as9 = 0, Ha + a22 - b,a2 = 0 

Indeed the conditions (2.8) are necessary for a nontrivial (y # 0) solution of (2.7) to 

exist. Conversely, if these conditions hold, the system (2.7) and therefore (2.6) will, 
after the substitution 01~ =T 00~ + dt, be in involution relative to the unknowns V, rq, Vt 
and q:t. 

The first condition of (2.8) represents the condition for the field e, to be holonomic 
and the remaining two, with the first one taken into account, mean that the field of 

adjoint vectors 1 of the field of e, is potential, 
Let us find the degree of admissible arbitrariness under which the vector fields satisfy- 

ing these conditions may exist. The first and third condition of@. 8) together with the 

structure equations imply that Za,c2 + aI1 + a22 -I- u33 - h 1o3 = arcI - b,e,. Continuing 
the system (2.2) and taking these conditions into account, we obtain 

c012 = C1(O’ + C#2 + c@ 

&, = (-a,y -. a2i)ti’ $ (a3b, -. oS3 - ~!,,)w’ + (u~CQ - U3Cl - QlU -- h”!@” 

da1 = (ash, + a2c1 - b,c, -- 2qc2 - a,.?- ax3)a1 + (azl + 2a,c, + a2c2 - hc2 m2 + 

+ !a2c, - ma3 - u,h, -. ala2 - hlc2)03 (2.0) 

da2 = a?,@’ + amu2 + azso3, da,= - c2aZm1 + (a25 + a12+az2 + 0,’ + 

+ %,r,)d + C13;+P 

Performing now the external differentiation on (2.9) we obtain a bilinear system in in- 
volution. Its solution exists and can be determined to within two functions of two argu- 
ments. This can be seen when constructing a regular chain of solutions using the Kahler’s 
method [7]. 

If a unit vector field satisfying the conditions (2. 8) is specified, then a solution of 
(2.7) exists and can be determined to within two functions of a single argument. This 
can be verified by making the substitution o 2 = od’ + dl and constructing a regular 
chain of solutions using the Kahler’s method, whereupon Y is determined to within one 

function of a single argument. This proves Theorem 1. 
We shall next prove Theorem 2. The system determining an irrotational (IV1 = 0, 

IV2 = %W, a, - b, = 0) stationary flow with the velocity modulus equal to W,has the 
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form 

dW = asWwa - HWU~, dq = a3WZo2 - HWb3 (2.10) 

This is equivalent to the system 

W-IdW = a3o2 - Ho’, cp = l/z w + const (2.11) 

The system (2.11) is fully integrable if rot (a3e, - Hed = ml = 0. Comparison with 
the conditions of Theorem 1 completes the proof of Theorem 2. 

The system (2.6) implies that 

(In V),I = (In V),Z = (In V)t3 = 0 

Consequently (In V)t = Q (t). Integrating this relation and taking antilogarithms we find that 
V = II, (t, W, where Wt = 0. From (In V), = 0, (In V), = a,, (In v), = -H and Wt = 0 

it follows that W, = 0, W, = aSW, W, = -H W, W, = 0, i. e. W satisfies system 

(2.10). Conversely, if W satisfies (2.10). then -+ (t) W,where g (t) is an arbitrary funct- 

ion, satisfies (2.6) (obviously, they have different acceleration potentials). This proves 
the validity of the Note in Theorem 2. 

Let the field of velocity directions of an irrotational quasi-stationary flow, i.e. the 

field of unit vectors satisfying the corresponding conditions (2.8). be given. We shall 
investigate under what conditions this field may serve as the field of velocity directions 

of a rotational quasi-stationary flow. The system defining the quasi-stationary flow in 
this case has the form 

dV = Veoa - HVc.9 + V&, dq = ajVzo’ + (V, - HVJ) 03 + ‘ptdt 

External differentiation yields the following system: 

(2.12) 

]dV&] + [dV,dt] = - crV2 [o’02] - (H# + yVz) [030:] + 

+ [co%+] (HLV - HasV + HV2 f a?Va) - [o*dt] HVt 

[dVto3] + [dqtdt] = [0203] (~~31’~ - 2HasV” + 

+ 2HVVz) + 2asVVt [&dt] - 2HVI’t [wsdt] (2.13) 

from which we find that HIV + yV, = 0, but HI + a,y = 0, therefore y (V, - aJV) = 

0. Ify= al - cs # 0, then V, = a3V, i. e. if the field of curvature vectors k is nonhol- 
onomic, no rotational stationary flow exists possessing the same streamlines as the given 

irrotational flow. If y = U, the system (2.13) is not in involution. Continuation and 
external differentiation yields 

[dV~@l= A [al@‘] f B [aa@] + E [a2dt] + [03dt]2V (V, - aaV)(fP - H,) 

[dVttdt] = [0203]2V(V, - a,V)(H$ - Hz) + F [o”dt] + G [wadt] + K [oldt] (2.14) 

[dV&] + [dwdtl = L [02w3] + P [0301] + N [u2dt] + Q [03dt] 

The form of the coefficients A, B, E, F, G, K, L, P, N and Q is not important as long 
as they remain different from zero. From (2.14) it follows that 2V (V, - a3V)(Ha - 

H,) =&and the condition H3=H2is necessary for a rotational flow to exist. The condi- 
tions HS = Hz and y = 0 are also sufficient for the reason that, provided that the field 
of velocity directions without a rotational motion satisfies these conditions, the system 

(2.14) is in involution; its solution exists and is determined to within three functions of 
a single argument and V is determined to within two functions of a single argument. 
This can be verified by making the substitution w* = wo” + dt and constructing a regu- 
lar chain of solutions according to the KBhler’s method. The condition y = al - CQ -- 0 
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means that the field of curvature vectors k = a3e, of the given field of e3 is holonomic 
[S]. This completes the proof of Theorem 3. 

Suppose that the congruence of the streamlines of the irrotational stationary flow is 
minimal, i.e. that the conditions a1 - b, = 0, H = 0, y = 0 and ua3 - b,a3 = 0 are 

satisfied. Then both rotational and irrotational flows, in either stationary or quasi-sta- 

tionary state, with thesestreamlines exist. In this case the system (2.12) defining a qua- 
si-stationary flow has the form 

dV* = VX*w” + V’,*dt, dq* = a3 (I'*) %o)? + Vl*03 + ‘pt*dt (2.15) 

and the stationary flow is defined by 

dW* = Wz*03, d% = a,(IY*y 0" (2.16) 

If Wa* = asW*, the flow is irrotational, i.e. the system 

dW = asWoa, dcp = a3W%oa (2.17) 

defines an irrotational stationary flow. 
From (2.15) it follows that (In Vt*)t~ = (In V,*)~Z = (In Vt*)t3 .= 0. Therefore (In Vt*)t= 

(D(t). Integrating we obtain V* = I$ (t) W + W’iwhere Wt = Wf* = 0. Since Vt,* = Vr3* = 

0, and Vl,* = a3Vl*, then or = W3 = 0 and Wz = a3W, therefore W satisfies (2.17). From 
vr* = V3* = 0 and WI = WI = 0 follows WI* = W3* = 0, i. e. W* satisfies (2.16). 

Conversely, let W satisfy (2.17) and W* satisfy (2.16), and let 9 (t) be an arbitrary 

function of t. Making in (2.15) the substitution V+ = II, (t)W f W* and performing ex- 

ternal differentiation with (2.16) and (2.17) taken into account, we obtain [dr&*dt] = 
L [oadt] + K [osdtl,where L and K need not be known exactly. This equation is in in- 
volution, the function cp* is determined to within one function of a single argument 

provided that W, W* and q(t) are specified. In other words, q (t) W + W* may serve as 
the velocity modulus for a quasi-stationary flow with specified streamlines. This proves 
Theorem 4. 

3. Examples of the line congruences which may serve as congruences of the stream- 
lines of both rotational and irrotational flows, in either quasi-stationary or stationary 
state, can be obtained by adding us = 0 to the conditions a, - b, = 0, a, - cs = 

0, H = 0 and a33 - b,a, = 0. Then cs = 0 and o2 becomes a total differential, 
Setting 0 ’ = dU at a, = 0 we obtain a congruence of circles lying on coaxial rect- 
ilinear circular cylinders. The motion is plane-parallel and the flow velocity modulus 

V = ‘II, (t) r-r + V, ( >, h r w ere r is the radius of the cylinder and V, (r) is an arbitr- 

ary function of r. For a, # 0 the streamlines become helical lines lying on coaxial, 

rectilinear circular cylinders, and their pitch h = Qa+ ra,where r is the radius of the 
relevant cylinder and Q is a nonzero constant. In this case V= 9 (t) r (i-j- Q2r2)+~ + 
V, (r). Th e coaxial helices are orthogonal to a minimal helicoid with the same axis 

for any fixed value of Q . Such examples were considered in [8] for a stationary flow. 
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